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What makes the Notional 
Future Combat System a hard problem?

A combination of indirect and direct fire functionality…

in a vehicle that weighs 20-50 tons less than either system alone!

Committed to Excellence
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Time Critical

Dismounted Personnel

Bunkers
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Cargo Round

Multi-role FCS Ammo: Target Sets & Effective Ranges

Committed to Excellence



4 of 20

High QE
FCS

Notional Operational Concept

Dedicated “Forward Observers”
• Soldiers
• Satellites
• UAV
• Quicklook
• Ground Sensors
• Intel

Moving or Stationary
Targets

Over-the-horizon 
Communication Links

Hit-to-kill and/or 
Shoot-to-kill Munition

C2P
FCS

4–50 km
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The Smart Cargo Round is one of three munition systems

required by the notional Future Combat System

     “A System of Systems”

Concept 1: Full-bore translation

Concept 2: Sabot on nose with minimum translation

Committed to Excellence



6 of 20

Smart Cargo Concept Design Issues

• To support the FCS 20 ton goal and 3x the number of “stowed

kills” per combat load, the Smart Cargo Round will:

- Maintain 155mm lethality in a 105mm round

- Utilize “cased telescope cartridge” design principles

- Without rocket assist, match the range of of the “best” 155mm rocket-

  assisted round (M549)

• From FY00-03, ARDEC will explore the feasibility of using smart

materials & structures to:

- Reduce the volume required for the Control Actuation System (CAS)

- Increase range via innovative approaches to exploiting control surface

  shape changes, aeroelasticity and high bandwidth servo control

Committed to Excellence
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• Structures and materials that sense external stimuli and respond

  with active control in real, or near-real time
• A combination of technology areas – materials, sensors, actuation, control algorithms &

  architectures

• Key features –
• Possibly an enabling technology for low-volume projectile Control Actuation Systems

• Embedded in structure or externally mounted

• Many smart materials have very high energy densities v.s. cyclic rate

• A few materials respond directly to the environment

• Typical smart structures for actuation:
• Shape memory alloys (SMA)

• Piezoelectric & electrostrictive ceramics

• Magnetostrictive materials

• Electro- and magneto-rheological fluids

• Elastomers & electroactive polymers

What are Smart Materials and Structures?

Work/Kg

Cyclic Rate

Jack Screws

Magnetostrictives

Piezos

Shape Memory

Hydraulics
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Level 4 - LM ATC Lab Test (1998)Smart Skin
(self and radiated noise cancellation)

Level 3 - ¼ scale lab prototypes (1997)Smart Panel
(structure acoustic & vibration isolation)

Level 6 - Scale F/A 18 Wings at NASA
wind tunnels (1996 & 1998)

Smart Wing
(structure morphing w/ tubes & wires)

Level 6 - NSWC Carderock 36” Water
Tunnel, (3Q 1998)

Vortex Wake Control
(vortex tabs on control planes)

Level 6 - Mach scale hover test of
integrated blades (1998)

Rotorcraft – Active Twist Blades
(fiber & tube twist) & (tabs)

Technology Readiness LevelApplication

DARPA and the Army Research Office have been
developing active control applications of Smart Materials
and Structures over the last six years…

Committed to Excellence
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Control Surface
(fin/wing/canard)

Antagonistic system
embedded in projectile wall

Micro-channel SMA increase BW 

Example SBIR Concept
(Mide’ Corp)

Work/Kg

Cyclic Rate

Jack Screws

Magnetostrictives

Piezos

Shape Memory

Hydraulics
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Whole bodies of aerodynamic research are open to
exploitation with smart structures and materials

• Mechanical benefits
+ Reduces control actuation system volume
+ Higher performance and reliability

• Aerodynamic benefits –
+ Increase altitude through lower supersonic drag

- active boat tailing & thinner control surfaces
+ Increase range in subsonic glide

- Projectile body shape (ellipse/camber)
- Control surface shape (active camber)
- Decrease trim drag (eliminate hinge pivot)
- Exploit unsteady aero-elasticity (resonance for plunging)

+ Increase stability (body shape changes to move center of pressure)
+ Increase control actuation system bandwidth

- faster actuators
- possibly stabilize unstable system

Committed to Excellence



11 of 20

GSMP Ballistic and Glide Trajectory Analysis for Fin T/C = 0.135
 Muzzle Velocity = 1100m/s, Q.E. = 45 deg.
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GSMP - PRELIMINARY MANEUVER ANALYSIS
AS A FUNCTION OF MANEUVER START ALTITUDE 

Muzzle Velocity = 1100m/s, Fin t/c = 0.135, Canard t/c = 0.165, Canard Area = 4.85 in sq.
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Maneuver Start Conditions
      TOF              RANGE      ALTITUDE

147.5sec    28999m   1000m
133.0sec    26833m   1500m
 119.5sec    24683m   2000m

NOTE: FIELD OF VIEW OF SENSOR 
HAS NOT BEEN INCORPORATED

Angular Response for Guided Smart Material Projectile (GSMP)
as a Function of Fin Formation Time
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Analysis output: Moments to generate ______
with _______ at ________ location on round

Generation of the Baseline “Design Space”

Work done by TACOM-ARDEC Aeroballistics Team
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Details: Active aerodynamic shape changes
+ Increase range in subsonic glide

- Projectile body shape (ellipse/camber)

Jackson, C.M. and Sawyer, W.L. “Bodies with noncircular cross sections and
bank-to-turn missiles” in “Tactical Missile Aerodynamics”, Vol 141 Eds. Hemsch
and Nielsen, (AIAA, New York) 1986
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Details: Active aerodynamic shape changes
+ Increase altitude through lower supersonic drag

- active boat tailing & thinner control surfaces

Jenn, A.A. “Drag Prediction Methods for Axisymetric Missile Bodies”, in “Tacticle
Missile Aerodynamics, “Vol 142 Eds. Hemsch and Nielsen, (AIAA, New York)
1992
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Details: Active aerodynamic shape changes
+ Increase range in subsonic glide

- Exploiting unsteady aerodynamics

The following details presented by:  Dr. Kenneth Frampton

Committed to Excellence
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Exploiting Unsteady Aerodynamics
& Aeroelastic Effects

• Traditional flight control achieved through
steady aerodynamic effects.

• Unsteady aeroelastic effects are avoided
for safety/reliability reasons

• Short life and minimal safety considerations
will permit these effects in munitions

• We can exploit unsteady aerodynamics and
aeroelastic effects to efficiently guide
munitions
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Birds and Insects Exploit Unsteady
Aerodynamics;  So Can We

• Existing DARPA program
seeks to develop
Ornithoptic Flying Robotic
Insects.

• A key  technology is the
development of aeroelastic
wings for flapping flight.

• Investigations have
demonstrate the
importance of unsteady
effects in the generation of
thrust.
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Aeroelastic Fixed Wings For
Flight Control

• A plunging airfoil in mean flow
will generate thrust.

• This phenomena can be
exploited to generate flight
control forces.

• Elastically tailored wings
posses  aeroelastic resonance
that generates such a motion.

• Efficient excitation with smart
materials creates flight control
without control surfaces.

Mean Flow

Harmonic
Wing Trajectory

Instantaneous
Force

Instantaneous
Velocity
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Aeroelastic Fixed Wings Wind
Tunnel Tests

• A delta wing wind tunnel test
has been developed.

• Aluminum flat-plate winglet with
embedded piezoceramic
actuators to produce desired
motion.

• Plan is to establish the needed
elastic response to generate
maximum thrust.
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Theoretical Extended Range
Control Example

• A 60mm mortar is equipped with
SMA airfoils

• Excitation at tailored aeroelastic
resonance produces lift/drag
forces

• End result is the ability to
increase range by 250 meters or
decrease by 150 meters

• Addition of appropriate guidance
and control will result in a
dramatic increase in accuracy
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ARO Young Investigator
Proposal for Smart Munitions

• Primary goal is to investigate the application of
smart materials technology to the development of
guided munitions.

• Investigation of unsteady aerodynamic
exploitation is of particular interest.

• 3 year plan including
– Developing aeroelastic models
– Seeking optimal actuator/structural design for the

generation of aerodynamic control forces
– Conduct wind tunnel tests to validate the findings.


